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Abstract We present a novel approach to the fuzzy
control of a DC-DC Boost Converter. Using heuris-
tic partitioning of the main control parameters and
focusing on global knowledge of the open-loop, stable
system’s equilibriums, the new method is developed
based on an offline fuzzy identification of the steady-
state duty cycle. The explicit and the fuzzy identified
global model of the duty cycle robustly contribute to
the system’s stability, even in the presence of large
changes to the process parameters. In comparison with
the analytically derived duty cycle using two differ-
ent methods, the identified model prediction of an
infinity horizon duty cycle shows better precision.
These results are achieved in an analysis of the con-
verter’s hybrid-simulation model where the assump-
tions made in the mathematical modelling are minor
in comparison with similar assumptions in physical
examples. The steady-state error compensation relies
on the optimized PI controller, which is independently
constructed and involved in the final Two-Degrees-
of-Freedom (TDOF) controller. The successful sim-
ulation results agree with the robustness and present
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I. Škrjanc
e-mail: igor.skrjanc@fe.uni-lj.si

D. Matko
e-mail: drago.matko@fe.uni-lj.si

a DC-DC converter with stable operation, even in
the dynamic exchange of the DCM (Discontinuous
Conduction Mode) and CCM (Continuous Conduc-
tion Mode). The method is widely applicable as it
minimizes the real time of processing and avoids
over-determined solutions.

Keywords DC-DC boost converter · Hybrid
modelling · Fuzzy identification · Robust control of
nonlinear dynamical system · Explicit Fuzzy Model
Predictive Control (EFMPC) · Two Degrees of
Freedom (TDOF)

1 Introduction

Even though the control of DC-DC converters has
been very well examined from different aspects with
respect to control techniques [1], model predictive
control (MPC) remains as one of the most systematic
and frequently used methods [2]. The wide range of
applications for all type of pulsed-energy converters
(PECs) dictate the main features of control algorithms
and as a result place constraints on the overall solu-
tions. MPC systematically handles the problem of
constraints, but at the same time puts an extra bur-
den on the processor’s time of execution and certainly
explains the method’s main drawback, which relates
to the complexity of computation. The complex algo-
rithms then necessarily affirm a new nonlinear phe-
nomena scenario in the transition time of the control
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and the system’s steady state, so harming the stability
of the system. Most of the problems addressed in
previous work on the control of DC-DC convert-
ers are consisted in terms of the uncertainties in the
mathematical modelling of PECs.

Hybrid modelling and control represent the state of
the art in terms of the exploration and design of PECs
[1]. The authors in this reference give a short overview
and a comparison of the profiled hybrid approaches,
mostly based on LMI, and optimization by convex pro-
gramming or a Lyapunov-function motivated stability
optimization. Systematic control approaches imple-
ment the LQ optimization [3] or H∞ control [4] in
a sense to provide a certain robustness to the plant
uncertainty and all are based on a linearized sampled
data model. On the other hand, relaxing the dynamic
programming introduces a complexity to the optimiza-
tion and opens up the well-know Lyapunov-function
selection problem [5], with a solution in time-limiting
convergence. Of no less importance is to consider the
overall applicable approaches based on current control
and known as sliding mode control [6, 7]. In contrast
to the experience in these studies we are again empha-
sizing the well-known problem of modelling systems
with discontinuities, but now also bearing in mind the
applicability of standard control methods.

In one switching period TS we receive multiple
changes to the semiconductors’ positions and, nec-
essarily, the circuit’s topology. Most of the previous
modelling [8–10] are based on the successive adding
of the piecewise affine models or forming an average-
switched model well presented in the publication of
Middlebrook and Ćuk [11]. The modelling solution is
based on the perturbation method, and it is valid for
small signal values. Furthermore, the same authors,
together with Erickson [12], provide more precise
modelling, called large signal modelling, which is
also applicable for robust applications. In today’s
control solutions more interest is put on nonlinear phe-
nomena exclusion [8–10, 13, 14], which necessarily
leads the mathematical discussion to well-posedness
and solution existence in the modelling of hybrid sys-
tems [15]. From modern mathematical aspects, the
modelling of DC-DC converters leads to comple-
mentarity formalism [15, 16] and has to be treated
accordingly. It gives a better insight into the switching
problem and a qualitative and quantitative system-
state trajectories’ pattern [16]. A complementarity
framework is used in sliding-mode control solutions

[17], but with no wider control applicability [16]. The
modelling problem certainly becomes more com-
plicated by assuming real circuits, where the ideal
switches are excluded and an unpredicted estimated
serial resistance (ESR) is encountered, combined with
a different system’s parameter changes.

To use the standard and developed control meth-
ods, but also to anticipate the possibility of nonlinear
phenomena scenarios, we suggest a new control based
on system identification and the construction of a
global dynamic or steady-state system model. In this
work we will concentrate on the global steady-state
model solution. Our method is built on the basis of
three-fold approach. First, transfer the complexity of
the computation to the offline regime. Second, con-
centrate the major part of the examination on the
equilibriums in a global and robust sense. Third, by
assuming a fully measurable system, involve the state
variables as transformed average values. The last of
these arises from the main objective in most DC-DC
converters’ control algorithms, which is the control of
the output voltage’s average level and not the output
voltage’s signal trajectory. Following this, the math-
ematical framework will not be exact and the previ-
ously mentioned problem of differential inclusion and
complementarity formalism, but rather solutions in the
pseudo norm vector space. Theoretically, it is strongly
supported in [18], and elementarily connected to the
approximation and smoothing operation of disjoint
sets in the Lebesgue space.

This approach will emphasize MPC more as a
methodology than as a strict control technique and
agree with the statements in [19]. It is focused on out-
put voltage control and has a correlation with most
of the mentioned hybrid modelling approaches, but
mostly as an agreement with objectives in the cur-
rent PEC control development. MPC [20] is opening
the discussion on duty-cycle modelling and approx-
imation with ν-resolution. The standard analytical
modelling does not give a uniformly spread error for
the duty-cycle approximation in the constrained range
[0,1]. With respect to this, our work avoids a strict
resolution that is relative and strongly depends of
the Fuzzy Model Membership construction. With this
approach, a graphical model is not a polyhedron of
the piece-wise affine systems with sharp edges, but
rather by avoiding edges and softening uncertain tran-
sits, it is a complex foliation. Similarly, a correlation
with dynamical programming [5] and the relaxation
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method produces the same findings in relation to the
stability of the optimisation algorithms, the prediction
of the convergence time and the stopping problem.
The last of these fortifies our opinion of the necessity
for offline optimization, even when knowing a current
processor’s capabilities. The idea is conceived in pre-
vious studies by different authors, e.g. [2], but also
with a different mathematical framework [21].

The Offline Fuzzy Identification presented here is
a global duty-cycle reconstruction, or MISO model
as an atlas of the steady-state mappings or graphi-
cally a folium related to different process parameters.
Any selection of the measured input variables on the
input universes of discourse is associated throughout
the fuzzy engine with a single and unique steady-
state duty cycle. The identified model is the Global
and Explicit Model, which then constructs the bases
for a MPC algorithm. This approach differs from the
classic preceding horizon MPC as it gives a time-
invariable solution that is more similar to the infinity
horizon solution, hence being explicitly driven with-
out the necessity for an inverse function calculation.
Also different than a classic fuzzy control [13, 14], this
paper supports the heuristic approach that implements
the fuzzy identification, and after a modelling, moved
from the strict analytical framework built on the piece-
wise linearity. The fragmentation of the MPC method
leads us to the construction of the Two Degrees of
Freedom Control, where the feed-forward line selects
the explicit fuzzy MPC’s (EFMPC) based steady duty
cycle, further corrected by the small signal PI opti-
mized controller. The complete work is done on the

MATLAB simulation platform [22], which does not
limit the applicability of the method, but rather proves
the method even in ideal situations, where an approx-
imation in the modelling is more precise than with
known analytical methods.

This paper is organized as follows. Section 2 starts
with a presentation of the hybrid modelling of the
boost DC-DC converter and explains a basic prob-
lem in the analytical system examination. Section 3
explains the fuzzy model identification. Section 4
presents the applied control method, followed by the
simulation results. Finally, Section 5 is a short conclu-
sion and a description of future developments.

2 Hybrid Simulation Model

An example is taken from literature [9], with all its
numerical values, in order to be able to compare the
results with previous research.

For a principal part of the electronic circuit on
Fig. 1, apart from the pulse-width modulator (PWM)
and controller with its set point s, using Kirchhoff’s
voltage and current laws, we form the ordinary differ-
ential equations (ODEs) ż = f (z) + g(z)u. Our state
vector is z = [vC iL]T and the input will be a voltage
source E.

The mathematical model is developed on the
assumption that semiconductors are ideal switches
with no voltage drops and the inductivity has no equiv-
alent series resistance (ESR). The system is sequen-
tially driven over three modes related to the position

Fig. 1 Typical DC-DC
boost converter, voltage
controlled
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of the switches and this applies to the three sets of
state-space equations for a different circuit topology
[9]

ż = Aiz + B iE i ∈ [1, 2, 3] . (1)

During the period TS we can stack the consecutive
solutions for each time ti,k interval and form the tran-
sition map for the complete period, by knowing that
ti,k + t2,k + t3,k = TS .

The analytical examination can be continued as a
way to further develop the difference equation. This
leads to a procedure of neglecting the higher-order
powers and approximations of the constructed tran-
sition matrix. So, a successive substitution with the
involvement of the Taylor power series approximation
evolves in a tedious input/output system representa-
tion, but still with the involvement of approximations
and the ability to examine only simple switching algo-
rithms [9, 10]. Furthermore, even if a simple switching
algorithm is selected, the analytical definition of the
duty cycle becomes a transcendental mathematical
problem and it can only be solved by numerical methods.

Hence, from the side of nonlinear dynamical sys-
tem examinations, a general expression has to evolve
in ż = f (z, d)+g(z, d)u for the duty cycle d = t1,k

TS
as

a control signal of closed-loop control and the scalar
input signal in the process.

A previously explained theory physically leads in
the hybrid modelling and examination of a system in
its complex overall and natural form.

The nonlinear state-space expression of a DC-DC
boost converter is given by:

ż(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

A1z(t) + B1E(t) kTS ≤ t ≤ kTS + t1,k

A2z(t) + B2E(t) kTS +t1,k < t ≤ kTS +t1,k+t2,k

A3z(t) + B3E(t) kTS + t1,k + t2,k + kTS < t

< (k + 1)TS

k = 0, 1...∞ (2)

in DCM or

ż(t) =
{

A1z(t) + B1E(t) kTS ≤ t ≤ kTS + t1,k

A2z(t) + B2E(t) kTS + t1,k < t < (k + 1)TS

k = 0, 1...∞ (3)

in CCM of DC-DC converter.
The presented models are exact or a complete sys-

tem physical representation, and also a source for the
construction of the simulation model in Fig. 2. At
this point further examinations will follow based on
the numerical methods in the simulation and control
design of the predictive control algorithm, and in con-
trast to most of the known, developed methods they
will not consist of piece-wise linear expressions. By
knowing that the top objective of the following work is
the control of the output voltage, which is assumed as
a DC signal, then the physical approach leads us to the
selection of root mean square (RMS) measured values.
Now the new state variables cause a mathematical
transformation of the original state space (1) to the

Fig. 2 DC-DC boost
converter, hybrid simulation
model
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pseudo-norm vector space, based on assumptions that
a new state vector z̄ = [

v̄0, īL
] ∈ 2 (Lebesgue), as

a product of the numerical integration methods with
an approximate solution in the system discontinuity.
The RMS measurement of the original state space
variables is done in TS time period.

3 Fuzzy Identification and Modelling

A new pseudo norm ‖ · ‖ on vector space (V, ‖ · ‖)

(4)

will be derived from the simulation process of the
hybrid mathematical model and a numerical integra-
tion based on the explicit Runge-Kutta (4, 5) method
and developed in the “ode45(Dormand-Prince)” MAT-
LAB [22] for p = 2.

The space transformation filters out the high-
frequency nonlinearities or the high-scaled oscilla-
tions. In the continuation, a pseudo norm space
(V, ‖ · ‖) will be further transformed to the pseudo-
Banach subspace of an augmented dimension.

The simulation process Q of the hybrid system (2)
will expand the origin three-dimensional space includ-
ing time to the six-dimensional space Q : 3 → 6.
That is possible by knowing that our physical sys-
tem is state measurable. The extra measured process
parameters are E as the input voltage source to the
converter, the output current iR , the control variable to
process du = (1−d)0.66 f or d ∈ [0.1] scaled related
to the Pulse Width Modulator (PWM). The measure-
ment of the iR and together with the controlled voltage
value will reconstruct the converter’s load.

From the simulations we know that the process is
open-loop stable. Even when transformed, the system
still preserves its nonlinear dynamical characteristics.
With the intention to predict the stable control param-
eter du, our work will concentrate on an examination
of the stable steady state of a DC-DC boost converter.

A mapping Q derived the trajectories over the
six-dimensional pseudo-Banach space and opens up
ability for an orthogonal slicing of the new vec-
tor space (V 6, ‖ · ‖) to the tangent vector space
(V 6

1 , ‖ · ‖) ⊂ (V 6, ‖ · ‖). Geometrically,
(V 6, ‖ · ‖) is a smooth manifold M1, which con-
sists of the targeted six-dimensional tangent space
T x̂0M1. The steady and stable state of the converter

is assigned as x̂0 ∈ M1. The vector of transformation

τ =
{

∂
∂t

∣
∣
x̂0

, ∂

∂iL

∣
∣
x̂0

, ∂

∂V C

∣
∣
x̂0

, ∂
∂E

∣
∣
x̂0

, ∂
∂R

∣
∣
x̂0

, ∂
∂du

∣
∣
x̂0

}
is

a natural base of T x̂0
M1, and T x̂0

M1 = τoM1
∣
∣
x̂0

.
Throughout the tangent space T x̂0

M1 we pull an
affine surface orthogonally on the first coordinate of
T x̂0M1 kernel. The so gained surface S consists of the
system steady states. The trajectories driven from the
simulation process Q intersect the surface S at partic-
ular points x̂0,i for i = 1, ....n and n is the number of
the final and the time filtered test samples. Because n

is a limited number n < ∞, our surface S is not dense
and it applies for an interpolation. Our transformed
original space is now based on affine functions, and
by the employment of the identification method; we
construct the modelled surface with its minimal error
to the representatives x̂0,i of the physical surface.

The main task of the following work is the math-
ematical definition of a mapping ψ

(
V 6

1

) : 5−1 →
2−1 and the construction of the explicit fuzzy model

of the control signal du, which guarantees a true and
predicted system steady state as a consequence of
the vector of a measured and ‖ · ‖2 values x̄ =
[
v̄C īL īR E

]T
.

The objectively accepted results of the mapping
identification could be reached only by thoughtful
selection of the measured process data. This task,
by examination of the quantitative system dynamical
behaviour, has to exclude always-possible preliminary
conclusions that mostly lead to severe model/process
errors. In order to support that approach, in this paper
we involve the process excitation only with a random
pattern. The vector of the process changes ξ(kT∞) =
[E(kT∞) R(kT∞)] originated by the MATLAB white
noise and random function together with the excitation
duty cycle form the overall input vector u(kT∞) =
[du(kT∞) | ξ(kT∞)]. Figure 3 expresses the simula-
tion principle where the discrete time kT∞ is selected
to preserve the steady-state measurement, afterwards

z(t)=A  (t)z(t) + B (t)E(t)

m= {1,2,3 }  in a time T

Mathematical Model

m m
u(k T  ) x((k+1)T   )

Hybrid 
s

88

Fig. 3 Mathematical model simulation principle of construc-
tion the system-scanned database
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resulting in the database and forming the identification
training data set.

3.1 Fuzzy Model Identification

Based on the heuristic assumption that there exists
a deterministic and unique mapping in the pseudo
Banach space (V 6, ‖.‖) we form the fuzzy identified
model F(V 6

1 ) : 5−1 → 2−1 where in the process the
steady state holds the expression for the duty cycle

du = F(x̂) (5)

The input vector to the fuzzy mapping will be x̂ =
[
v̄o īL E R

]T
, partly simplified from an x̄ with the

assumption that vc ≈ vo and the implementation of
R = v̄o

īR
, īR > 0. Generally, mapping is a function of

the input vector x̂ = x (in the following assigned as
x for reasons of simplicity) defined by its parameters
and hence

du = y = f (x|θ). (6)

In equation (6) the θ = {a, c} denotes the set of fuzzy
model parameters , and in our example

a =

⎡

⎢
⎢
⎢
⎣

a1,1 a1,2 a1,3 a1,4 a1,5

a2,1 a2,2 a2,3 a2,4 a2,5
...

...
...

...
...

ab,1 ab,2 ab,3 ab,4 ab,5

⎤

⎥
⎥
⎥
⎦

c = [
c1 c2 · · · cb

]

. (7)

The constant b is a number of rules in the fuzzy rule
base.

For all systems [23] if there is a function

g : X̃ → Ỹ

that X̃ ⊂ l , Ỹ ⊂ then with the process of iden-
tification we approximate the mapping g in the way
that

g(x) = f (x |θ) + e(x) . (8)

The approximation f (x|θ) of a physical system was
derived from examinations of the training data set

G =
{(

x1, d1
u

)
, ...,

(
xM, dM

u

)}
⊂ X̃ × Ỹ

constructed by M data pairs of the steady-state rep-
resentatives, from a complete data set gained in the
simulation Q and corresponding to (5).

In this study the selected C-means clustering
method will iteratively minimize the distance

J =
M∑

i=1

b∑

j=1

(μij )
p

∥
∥xi − cj

∥
∥2 (9)

from a bonding data representative center vector
c1, c2..., cb in vector space (V 6

1 , ‖.‖) ⊂ (V 6, ‖.‖), of
our predefined universes of discourses. The process of
clustering will be performed on M data pairs of G.

The parameter p is the so-called “fuzziness fac-
tor” [23], which determines the factor of overlap
in-between clusters and μ the grade of membership.

Accordingly in this study the selected fuzzy model
is the Takagi-Sugeno MISO model, which consists of
the rule base, presented with an equation

if H j then gj (x)

where H j denotes the fuzzy set

H j =
{
(x, μH j (x)) : x ∈ X̃1 × ... × X̃n

}

and

gj (x) = aj,0 + aj,1 x1 + ... + aj,4 x4

for j = 1, 2, ...b .
The complete fuzzy function is given by

f (x |θ) =
∑b

j=1

(
aj,0+aj,1x1+ ... + aj,4 x4

)
μH j (x)

∑b
j=1 μH j (x)

.

(10)

As the clustering method does not tune the complete
fuzzy parameters θ but only c, a consequence func-
tion parameters a will be defined by the least-squares
method

aj =
(
XT W 2

jX
)−1

XT W 2
jY

X =
[

1 · · · 1
x1 · · · xM

]T

Y = [
du,1, · · · , du,M

]T

W 2
j = (

diag
([

μ1j , · · · , μMj

]))2

(11)

and again in order to minimize the cost function

Jj =
M∑

i=1
(μij )

2
(
du,i − [

1, xT
i

]
aj

)2

j = 1, 2, ..., b.

(12)
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Accordingly, all the identification processes can be
briefly presented in the following algorithm steps:

1. Simulation of the physical system (Hybrid simula-
tion model) excited with u = [du ξ ]

2. Forming of M data pairs of the training data
set G

3. Definition of μij the new grades of membership
(p = 2) by the C-means clustering

μij =
[

b∑

m=1

|xi−cj |2

|xi−cm|2
]−1

i = 1, ..., M

j =1, ..., b c= [c1, c2, ..., cb] initially selected

(13)

4. Definition of cj the new centres by the C-means
clustering

cj =
M∑

i=1
xiμ

2
ij

M∑

i=1
μ2

ij

j = 1, ..., b

(14)

5. Definition of aj the consequence parameters by
the weighted least-squares method

6. Defuzzification (10) by implementation of the
grade function

μH j (x) =
[

b∑

m=1

|x−cj |2

|x−cm|2
]−1

j =1, ..., b c= [c1, c2, ..., cb] c − means tuned

The constructed fuzzy model here is the mapping,
which transfers a converter’s parameters from the
input universes of discourse

v̄o = x1 ∈ X̃1 = [0 V, 700V ]
īL = x2 ∈ X̃2 = [0A, 1030A]
E = x3 ∈ X̃3 = [10V, 16V ]
R = v̄o

īR
= x4 ∈ X̃4 = [10�, 32�]

.

to the output universe of discourse or simply a duty
cycle

du = y ∈ Ỹ = [1, 5 % , 98, 5 %] = [0.65 , 0.01] .

The fuzzy rule base consists of b = 33 rules, and the
fuzzy parameters θ = {a, c} were reconstructed and
based on the knowledge gained by M = 635 pairs
of G.

It can be now presented geometrically as an invari-
ant foliation in the tangent subspace T x̂0

M1. For an
understandable graphical presentation, it is drawn in
three-dimensional space formed by the original and
appreciated dependence of a duty cycle du from the
coil current iL and the output voltage v0, while the
remaining dimensions are fixed in the x̂0 points of
their constrained universes. Figure 4 expresses the
sliding effect in the three-dimensional space of the
original nonlinear dynamical system in its equilib-
riums influenced by a source voltage change. In a
similar way, Fig. 5 shows the sliding effect with a load
change.

Fig. 4 Explicit Fuzzy
Model invariant foliation
for step changes of E=10,
13, 16 V (source voltage)
and R= 12.5�
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Fig. 5 Explicit Fuzzy
Model invariant foliation
for step changes of load
R=12.5, 20, 30 � and
E=16 V
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3.2 Fuzzy Model Evaluation

In order to evaluate the fuzzy modelling and achieved
results, the evaluation test will be done in such a
way that the physical system or the hybrid simula-
tion model in Fig. 2 will be excited with a ramping
duty cycle, from 0 % to 100 %, varying as discrete
input in the time nT∞, while the source voltage and
the load resistance are fixed. The received data, as
the testing data set, will now be the input data to the
explicit fuzzy model. The resulting outputs from the
explicit model testing (10) will then be back compared
with the original excitation duty cycle of the physical
model.

Approximation error from the explained test

en = dfuzzy,n − dn (15)

for nth the data equilibrium set is further evaluated by
comparing with the analytical results from [9] and the
results based on the average switched method.

Figure 6 is a graphical presentation of the fuzzy
model testing results, compared with the real excita-
tion duty cycle. The graph is drawn for one combina-
tion of the fixed load and the source voltage, which
means that a similar test can be done for a different
combination of the fixed process parameters.

For a same data in Fig. 6, a comparison of the
results has been made to the analytically calculated
duty cycles on two different ways. One calculation is
based on small signal values and the averaged model,

and the other is based on the stroboscopic Poincaré
map analytically derived in [9]. Figure 7 shows all
the evaluations together. We see that the stroboscopic
Poincaré map approximation

vo(k + 1) = αvo(k) + βd(k)2E2

vo(k) − E

α = 1 − TS

C(R + rC)
+ T 2

S

2C2(R + rC)2

β = RT 2
S

2LC(R + rC)

dpoin =
√

(1 − α)(s − E)s

βE2
(16)

or the averaged system method approximation, devel-
oped for the DC-DC boost converter in this investiga-
tion

dlin = (E − s)(R + rc)

sR
(17)

are providing globally less accurate results in the
steady-state duty-cycle prediction than the one result-
ing from the fuzzy model (5),(10).

If we calculate the arithmetically averaged error in
all three cases, hence

ēPoin = 0.3592 or 53.61 %

ē
lin

= 0.0149 or 2.22 %

ē
f uzzy

= 0.0079 or 1.17 %.
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Fig. 6 Comparison of ramping duty cycle to Physical Model and reconstructed duty cycle by Explicit Fuzzy Model, while constant
E=16V and R= 12.5�

Figure 7 already explains a very inaccurate
Poincaré stroboscopic map approximation of the
steady-state duty cycle for a complete range of duty
cycles. But if we transfer a comparison in the limited
range of interest [16,50] the VDC of the reference
voltage, or only the DCM converter’s operation, then
the results are more comparable. A stroboscopic map
[9] is derived for the converter DCM and it is expected
to be non applicable for a complete range of DC-DC

converter operations. The methods driven in this work
that are the same as the averaged model approximation
are the global methods and comparable for a quantita-
tive examination of the physical system. So if we limit
the range of interest to that mentioned, the following
results were found:

ēPoin = 0.0132 or 1.97 %

ē
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= 0.0199 or 2.97 %
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ēf uzzy = 0.0065 or 0.97 %.

Now, the results of all the methods are comparable
and still the fuzzy model is the best approximation of
the steady-state duty cycle, and it will be used in a
duty-cycle prediction of the control algorithm for the
infinity time horizon.

4 Two Degrees of Freedom Methodology,
the Way to Control Law

Although the physical system has been identified and
the global model derived, implementation into the
final control algorithm won’t follow the regular MPC
framework. As already mentioned in the introduction,
main lead will be final control simplicity. In order to
utilize a well-established PID control, which is suf-
ficiently applicable in the narrow range around the
predefined operating point, and in a same time by hav-
ing known the global process pattern, we form robust
control structure presented by the block diagram of
the Fig. 8. In the previous section derived the Fuzzy
Explicit Model (FEM) will be enriched by integration
block and expressed in the common transfer function

GFEM(z) = F (x̂(k))
TS

Ta(z − 1)
.

Inputs assigned by N1(z), N2(z) denote the noise
signal supplemented to the manipulated variable
and measured output respectively. The χ =
[vo, iL, iR, E] is a vector of measured process vari-
ables integrated into the control concept and providing
the fuzzy model’s tracking lead.

By forming the all SISO possible closed loop trans-
fer functions from the control structure on the Fig. 8,
assuming that other inputs are 0 and dχ /dt = 0, one

can easily examine the existence of only two indepen-
dent. Hence, it defines our control structure as the Two
Degrees of Freedom control [24].

This control methodology complies with our main
goal of partitioning standard MPC method and allow-
ing independent adjustment of the system’s response,
linked up to the process constraints and steady state
stability. Following the above methodology, controller
consists of the steady-state fuzzy-model in the feed-
forward line and the optimized PI controller in the
main controller’s line.

The control law is formed from the two, in a phase
of designing, non-correlated control signals

du(t) = 1

Ta

∫

dFEM(kTS)dt + dPI (t) (18)

where

dFEM(k) = F(x̂(k)) = F
(

s(k), ÎL, E(k),
v̄o(k)

īR(k)

)

(19)

is the predictive part of the control algorithm
based on the Explicit Fuzzy Model derived from
the offline identification process in Section 3, and
dPI = GPI (s −vo) is the output from the analogue PI
controller.

Conceptually similar to the Explicit Model Predic-
tive Controls [21] in the sense of the offline identified
model based control, but advanced in minimization of
the online computation complexity, this method opens
up ability to conciliate a better controller’s perfor-
mance with avoidance of the complex Mutiparametric
Programming. This method doesn’t solve the stan-
dard predictive control problem and it is not based

Fig. 8 Implementation of
the Fuzzy Explicit Model in
the typical two degrees of
freedom control structure
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on receding horizon principle, thus in correlation with
standardized MPC methods points out:

– The prediction horizon is infinite, it goes for an
open-loop stable system and the prediction is
related to the system’s steady state.

– The reference trajectory is implemented by an
extra integration on the output of the explicit
model. The time of integration is a tuning param-
eter and affects the controller’s aggressiveness in
the transient time.

– The internal model is the Fuzzy Explicit Model
of the steady-state duty cycle and not the Fuzzy
Dynamical Model, and accordingly it does not
suffer a typical feedback problem.

– The steady-state error is compensated with a stan-
dard analogue PI control tuned in the highest
process gain regime and it is not treated by the
predictive control itself.

– The feed-forward characteristic of the standard
MPC method is explicitly fulfilled by the con-
troller’s configuration.

For the simulation purpose of this work, shown in
Fig. 9, and without loss of generality, the optimized
PI controller will be constructed purely based on the
MATLAB tools for the SISO controllers [22]. The
original boost DC-DC converter or process in this
investigation is shown in Fig. 1, will be linearized by
the well-known perturbation method around the oper-
ating point, and accordingly as an “Averaged-Switch
Model” [11] introduced in the control optimization of
the PI controller.

The construction and tuning of the PI controller
is done in the two standard steps of the “sisotool”
MATLAB toolbox:

1. Construction of the PI controller by the auto-
tuning method based on the singular frequency
and minimizing the ITAE (Integral Time Absolute
Error) performance

2. Optimization-based tuning by the Gradient
Descent Algorithm for a Medium Scale.

The transfer function of the analogue controller
in its equivalent discrete form for a sample time
tsample = 10−6 s is

GPI (z) = 5.648 · 10−4
(

z − 1.000354

z − 1

)

. (20)

The offline optimization is done around the operating
point

s = 50 V, E = 10 V, R = 12.5 � (21)

which is selected closer to the top border of the pro-
cess gain and the coil current range in order to achieve
a stable operation even with a large difference in the
process parameters.

Optimization is performed on the “averaged-switch
model” linearized around the operating point and in its
discrete form

Gm(z) = −0.090237z + 0.0904

z2 − 2z + 0.9996
. (22)

Fig. 9 Simulation model
for the TDOF Control
method based on Global
and Explicit Fuzzy Model
of the converter’s
steady-state duty cycle
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Fig. 10 Simulation results:
a - Controlled variable vo

compared in between
optimized PI and TDOF
controller including FEM
b - Manipulated variable
du compared in between
optimized PI and TDOF
controller
c - Manipulated variables
of TDOF controller before
the summation point in
the control loop
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From equation (19) it is transparent that the input
in the fuzzy model is a vector of the measured values,
except the one related to the predicted coil current in
the steady state ÎL.

The steady-state coil current is calculated by
involving the conserved energy law and the assump-
tion that the load in the secondary circuit of the
DC-DC converter will be changed only in a time that is
incomparably wider than the scan time or �t >> TS .
Also, the current efficiency factor has been taken as
an average for a particular converter’s operating range,
already predefined with universes of discourses.

4.1 Simulation of the Control Algorithm

The simulation of the control algorithm involves a
continuous disturbance, which in its final meaning has
to result in the performance comparison of the TDOF
method and the classic optimized PI control. The
objectives in this work are primarily the robustness
and minimization of the transient time. So, the process
step parameter changes are commenced in combina-
tion, or all together for a wider operating range of the
DC-DC converter. By altering the reference point s,
the converter will be guided from the current discon-
tinuous mode of operation to the continuous mode,
where the highest process gain is expected at the top
border of the coil current universe of discourse. The
process parameters in the simulation are

TS = 333.33 μs, L = 208 μH, C = 222 μF.

The aggressiveness of the model control is tuned and
resulted in

Ta = 0.004

by taking care of the current iL constraint and the duty
cycle du first derivation constraint.

Figure 10a shows the controlled process output
responses for a certain controller on the step changes
of the source voltage E, the load resistance R and
the voltage set-point s. The optimized PI controller is
tested in the two control structures. First, as pure PI
control with the feed-forward line disconnected. Sec-
ond, as a PI control integrated into the complete TDOF
control structure. In the same test, Fig. 10b shows
the controllers’ manipulated variables. Furthermore,
Fig. 10c shows the manipulated variable of TDOF
controller presented by its two constructive parts. That

is explicitly presenting the main features of the TDOF
control methodology.

The disturbance of the process parameters is syn-
chronized with the set point change or separately
to simulate a possibly realistic DC-DC converter’s
operating regime.

Generally, in this work the developed TDOF con-
troller features stable and robust operation. We see
that the two dynamics approach, also affirmed by
the decomposition of the general controller parame-
ters, fulfilled expectations and presents the remarkable
results relative to the complexity of the design and
the online processing time. The stability of the con-
trol method relies on the stability of the PI controller
and that is not a chain related to the delays in the tran-
sient time, which is now only related to the physical
constraints. The only drawback is a naturally present
model/process error and its effect on the steady-state
error, manifesting as an overshoot, but now less harm-
ful than the perspective cause of the nonlinearities in
the standard MPC methods.

The offline optimized PI controller is comparable
in the process higher gain range where the optimiza-
tion was done. The constraints handling of the input
signal in the PI optimized controller can be achieved
as well as with MPC controllers by the selection of the
highest gain operating point. In the TDOF controller,
this feature is already integrated into the steady-state
fuzzy model; therefore, a proper tuning of the PI
parameters preserves it.

5 Conclusions

We present an efficient, new, MPC method based on
the TDOF principle for an open-loop stable hybrid
system that is state measurable. Instead of focusing
on the transient process characteristics, the method
is pointing out the global process knowledge of the
steady state. As shown, this knowledge is integrated
into the explicit fuzzy model gained by the identifi-
cation process. Each processor’s scan time, controller
predicts the steady-state duty cycle and by concerning
the physical constraints adopts with the fastest tran-
sient time to the process parameters’ change. The mis-
fortune in the model/process approximation error is
compensated by a small signal PI optimized controller,
developed with the standard toolbox. The stability of
the control system is related only to the stability of
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the feedback related and standard PI controller by tak-
ing into consideration that process parameters’ change
period is incomparable longer than the controller’s
scanning time.

Further examinations will be conducted in the
direction of an adaptive steady-state current predic-
tion, based on a measurement and followed by the
complete nonlinear phenomena exclusion.
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